Quant Puzzles 7 - Birthday Problems

NT Quant | Substack
Math/Markets/Code. Weekly quant puzzles, research, and industry
insights. Click to read NT Quant, a Substack publication with
thousands of readers
(2) https://ntquant.substack.com/

Question 1: Birthday Problem (Easy)

If you have $N \leq 365$ people in a room, what is the likelihood that at least 2 of them have the same birthday?

Solution:

We must calculate the probability that everyone has a unique birthday and subtract it from 1. There are $P_{N}^{365}=\frac{365!}{(365-N)!}$ permutations for N people to have different birthdays. There are 365^{N} total birthday assignments for the N people.

$$
1-\frac{P_{N}^{365}}{365^{N}}
$$

Question 2: Birthday Problem 2 (Easy)

If you have N people in a room, what is the likelihood that someone has the same birthday as you?

Solution:

This is similar to the last question. We first compute the probability that nobody has the same birthday as us and then subtract it from 1 . For computing the probability that nobody has the same birthday as us, there are 364^{N-1} possible samples of birthdays excluding our own. There are 365^{N-1} possible ways for the other guests to have birthdays. Our answer is:

$$
1-\frac{364^{N-1}}{365^{N-1}}
$$

Question 3: Function Mappings (Easy)

- $|A|$ is the number of elements in a set

How many distinct functions can you make by mapping set A to set B if $|A|=m$ and $|B|=k$

Solution:

Each element of A has k possible elements that it can be mapped to.

$$
k^{m}
$$

NT Quant | Substack
Math/Markets/Code. Weekly quant puzzles, research, and industry insights. Click to read NT Quant, a Substack publication with thousands of readers.
(20) https://ntquant.substack.com/

