Quant Puzzles 6

```
NT Quant | Substack
```

Math/Markets/Code. Weekly quant puzzles, research, and industry insights. Click to
read NT Quant, a Substack publication with hundreds of readers.

NT Quant
 Math/Markets/Code. Weekly quant puzzles, research, and industry

 insights.Subscribe
https://ntquant.substack.com/

Question 1 - Holding Spades [Easy]

4 people are separated into teams A and B comprised of 2 people each. A deck of cards is then dealt to the four players. Is it more likely that team A holds all the spades or none of the spades?

Solution:

both events are equally likely. Many people can solve this using pure intuition but here is a more formal proof.
Let X be the event that team A holds all the spades. Let Y be the event that team B holds all the spades. Let Z be the event that team A holds none of the spades. Let N be the event that team B holds none of the spades.

- If team A holds all the spades (X), then team B holds none of the spades (\mathbf{N}) and vice versa. Therefore, the probability of both events is equal.

$$
P(X)=P(N)
$$

- If team B holds all the spades then team A holds none of the spades and vice versa

$$
P(Y)=P(Z)
$$

- Since the cards are dealt randomly, the probability that A holds all the spades and B holds all the spades are equal

$$
\begin{gathered}
P(X)=P(Y) \\
P(X)=P(Y)=P(Z)
\end{gathered}
$$

Therefore, the probability that A holds all the spades is equal to the probability that A holds none of the spades.

Question 2 - Normal Equation [Medium]

- This question is a very basic machine learning question but might be hard if you haven't taken a course in advanced linear algebra or statistical learning. If this is the case, leave a comment on the post and I'll know whether I should write some ML Theory content. Additionally, if you have no idea how to approach this problem go ahead and look at the solution.

The cost function of fitting a linear regression is

$$
R S S(\theta ; X)=\sum_{i=1}^{N}\left(y^{(i)}-X^{(i)} \theta\right)^{2}
$$

where X is the data matrix, the superscript is the row of the matrix and theta is a vector of the regression weights. Derive the weight vector that minimizes the value of the loss function.

Solution:

First, we convert the function into a matrix form

$$
\begin{gathered}
R S S(\theta ; X)=\sum_{i=1}^{N}\left(y^{(i)}-X^{(i)} \theta\right)^{2}=(\vec{y}-X \theta)^{T}(\vec{y}-X \theta) \\
=\left(\vec{y}^{T}-\theta^{T} X^{T}\right)(\vec{y}-X \theta)=\vec{y}^{T} \vec{y}-\vec{y}^{T} X \theta-\theta^{T} X^{T} \vec{y}+\theta^{T} X^{T} X \theta
\end{gathered}
$$

The expression below evaluates to the exact same constant. Therefore we can simplify the equation as follows

$$
\begin{gathered}
\vec{y}^{T} X \theta=\theta^{T} X^{T} \vec{y} \\
\Longrightarrow R S S(\theta ; X)=\vec{y}^{T} \vec{y}-2 \theta^{T} X^{T} \vec{y}+\theta^{T} X^{T} X \theta \\
\nabla_{\theta} R S S(\theta ; X)=-2 X^{T} \vec{y}+2 X^{T} X \theta=0 \\
\Longrightarrow X^{T} X \theta=X^{T} \vec{y} \\
\Longrightarrow \theta=\left(X^{T} X\right)^{-1} X^{T} \vec{y}
\end{gathered}
$$

In case the computation of the derivative seemed hard to understand, we will break it down in excruciating detail.

- The first expression doesn't contain any theta term so it evaluates to 0

$$
\nabla_{\theta} \vec{y}^{T} \vec{y}=0
$$

- The next expression can be multiplied out to observe the result

$$
\begin{gathered}
-\nabla_{\theta} 2 \theta^{T} X^{T} \vec{y}=\nabla_{\theta}\left(-2\left[\begin{array}{lll}
\theta_{1} & \ldots & \theta_{n}
\end{array}\right]\left[\begin{array}{ccc}
x_{11} & \ldots & x_{n 1} \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\cdot & & \cdot \\
x_{1 m} & \ldots & x_{n m}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
\cdot \\
\cdot \\
\cdot \\
y_{n}
\end{array}\right]\right)=-2 \nabla_{\theta}\left[\begin{array}{c}
\theta_{1} \sum_{i=1}^{n} x_{i 1} y_{i} \\
\cdot \\
\cdot \\
\cdot \\
\theta_{n} \sum_{i=1}^{n} x_{i m} y_{i}
\end{array}\right]= \\
\\
-2\left[\begin{array}{c}
\frac{d}{d \theta_{1}} \theta_{1} \sum_{i=1}^{n} x_{i 1} y_{i} \\
\cdot \\
\cdot \\
\cdot \\
\cdot \\
\frac{d}{d \theta_{n}} \theta_{n} \sum_{i=1}^{n} x_{i m} y_{i}
\end{array}\right]= \\
-2 \nabla_{\theta}\left[\begin{array}{c}
\sum_{i=1}^{n} x_{i 1} y_{i} \\
\cdot \\
\cdot \\
\cdot \\
\sum_{i=1}^{n} x_{i m} y_{i}
\end{array}\right]=-2 X^{T} \vec{y}
\end{gathered}
$$

- The third term is complicated to break down but if you multiply the matrix out, you get a sum of quadratic thetas, differentiating them will provide a linear term. and thus

$$
\frac{d}{d \theta} \theta^{T} X^{T} X \theta=2 \theta^{T} X^{T}
$$

NT Quant | Substack

Math/Markets/Code. Weekly quant puzzles, research, and industry insights. Click to read NT Quant, a Substack publication with hundreds of readers.
has https://ntquant.substack.com/

