NT Quant Quant Puzzles 4 : Recursion

NT Quant | Substack
Math. Markets. Code. Getting a leash on randomness. Click to read NT Quant, a Substack publication with hundreds of readers.
${ }^{28}$ http://ntquant.substack.com

http://ntquant.substack.com

Problem 1: Down to Zero [Easy]

Suppose a random process starting at node n moves to node $n+1$ with probability p, and node $n-1$ with probability \mathbf{q}. Suppose also that $\mathbf{q}>\mathbf{p}$. The process ends if it arrives at node 0 . What is the expected number of steps to reach node $\mathbf{0}$ in terms of \mathbf{p}, \mathbf{q}, and \mathbf{n} ?

Solution:

This question is a simple application of the linearity of expectation.

$$
E X=p(1)+q(-1)=p-q<0
$$

Every iteration, we move $\mathbf{| p}-\mathbf{q |}$ steps in the negative direction. So the expected number of steps given that we start at node n is:

$$
s=\frac{n}{|p-q|}
$$

Problem 2: Before Reaching 0 [Medium]

Suppose a random process starting at node \mathbf{n} moves to node $\mathbf{n + 1}$ with probability $\mathbf{1 / 3}$, and node $\mathbf{n} \mathbf{- 1}$ with probability $\mathbf{2 / 3}$. The process ends if it arrives at node 0 .

What is the probability of reaching node 5 before node 0 if you start at node 3 ?

Solution:

We form a system of equations to express this problem. Let s_{i} be the probability of reaching state 5 before reaching state 0 from state i.

$$
\begin{gathered}
s_{0}=0 \\
s_{1}=\frac{1}{3} s_{2}+\frac{2}{3} s_{0}=\frac{1}{3} s_{2} \\
s_{2}=\frac{1}{3} s_{3}+\frac{2}{3} s_{1} \\
s_{3}=\frac{1}{3} s_{4}+\frac{2}{3} s_{2} \\
s_{4}=\frac{1}{3} s_{5}+\frac{2}{3} s_{3} \\
s_{5}=1
\end{gathered}
$$

Solving the system of equations, we get that

$$
s_{3}=\frac{7}{31}
$$

Problem 3: Before Reaching 0, General Case [Hard]

Suppose we have a set of states

$$
\{0,1, \ldots N\}
$$

the probability of going from some state \mathbf{n} to $\mathbf{n + 1}$ is \mathbf{p}, the probability of going from state \mathbf{n} to $\mathbf{n - 1}$ is $\mathbf{q}=(\mathbf{1}-\mathbf{p})$. We want to find the probability of reaching state \mathbf{N} before reaching state $\mathbf{0}$ given that we are located at any starting state such that

$$
n \neq 0, n \neq N
$$

Find a matrix formulation of this problem, and a matrix expression for the solution.

Solution:

$$
\begin{gathered}
s_{0}=0 \\
s_{1}=p s_{2} \\
s_{2}=p s_{3}+q s_{1} \\
s_{3}=p s_{4}+q s_{2} \\
\cdots \\
s_{n}=p s_{n+1}+q s_{n-1}, \forall 0<n<N
\end{gathered}
$$

This is a simple linear system. We can build a matrix to express it.
create an $(N+1) \times(N+1)$ matrix where each column represents a state and each row represents an equation.

Let A be a $(N+1) \times(N+1)$ matrix where

$$
\begin{gathered}
A_{11}=1, A_{1, j>1}=0 \\
A_{N+1, N+1}=1, A_{N+1, j<N+1}=0 \\
A_{i, i-1}=q, A_{i i}=-1, A_{i, i+1}=p, 1<i<N+1
\end{gathered}
$$

Express the linear system as

$$
A \vec{s}=\vec{b}
$$

$$
\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & \ldots & 0 \\
0 & -1 & p & 0 & 0 & 0 & \ldots & 0 \\
0 & q & -1 & p & 0 & 0 & \ldots & 0 \\
0 & 0 & q & -1 & p & 0 & \ldots & 0 \\
0 & 0 & 0 & q & -1 & p & \ldots & 0 \\
. & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & \ldots & 1
\end{array}\right]\left[\begin{array}{c}
s_{0} \\
s_{1} \\
s_{2} \\
s_{3} \\
s_{4} \\
. \\
. \\
. \\
s_{N}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
. \\
. \\
0 \\
1
\end{array}\right]
$$

then,

$$
\vec{s}=A^{-1} \vec{b}
$$

